CHROM. 8727

Note

Improved solvent system for thin-layer chromatography of Dns-amino acids

MING-LIANG LEE and ALICIA SAFILLE

Division of Genetic Medicine, Department of Medicine, University of Miami School of Medicine, Miami, Fla. (U.S.A.)

(First received June 11th, 1975; revised manuscript received September 1st, 1975)

Coupling of the Edman degradation with dansylation of N-terminal residues has become increasingly popular as a technique of manual peptide sequencing. Numerous methods have been developed for the separation of Dns^{*}-amino acids (for a review see refs. 1 and 2) among which thin-layer chromatography (TLC) is the most widely applied, because of its sensitivity³⁻⁵. There are several solvent systems for twodimensional chromatography of Dns-amino acids^{3.6-8}. Those developed by Woods and Wang⁷ and modified by Hartley³ offer the least ambiguity, because the Dnsamino acids are widely distributed over the two-dimensional map. However, after two-dimensional chromatography many Dns-amino acids remain unresolved, and an additional chromatographic step with a third solvent is often required. For example, the pairs Dns-Asp/Dns-Glu, Dns-Thr/Dns-Ser and Dns-Ala/Dns-NH₂, and the quartet Dns-His/Dns-Arg/Dns- α -Lys/Dns- ϵ -Lys, are only separated after a third solvent, ethyl acetate-methanol-acetic acid, is applied³. In this note, we describe a modified second solvent, with which the need for a third solvent can be practically eliminated.

EXPERIMENTAL

Materials

Chen-Chin polyamide sheets were obtained from Gallard-Schlesinger, Carle Place, N.J., U.S.A. Dns-amino acids were purchased from Pierce, Rockford, Ill., U.S.A., with the exception of Dns-Met and Dns-carboxymethylcysteine which were prepared as described by Gros and Labouesse⁸. All other chemicals were of analyticalgrade purity.

The solvents used were: I, 1.5% formic acid⁷; II_M (modified solvent II⁷), benzene-acetic acid (4.5:1), to run at right angles to solvent I. In the original solvent II⁷ the benzene: acetic acid ratio was 9:1. On some special occasions (see Results and discussion), two parts of ethyl acetate were added to ten parts of solvent II_M.

Chromatography

Mixtures containing 100 pmoles of each Dns-amino acid were applied to a

* Dns = dansyl = 5-dimethylaminonaphthalene-1-sulfonyl.

NOTES

point ca. 0.7 cm from the lower left edge of 5×5 cm polyamide sheets. Each plate was developed in a 150-ml beaker containing 15-20 ml of solvent and covered with an inverted 400-ml beaker. The chromatography was stopped when the distance travelled by the solvent front was ca. 3.5 cm. Development with solvent I took 3-4 min, and with solvent II_M ca. 5-7 min. The entire procedure, including application of sample and thorough air drying between application of the two solvents, requires less than 15 min. Spots of the Dns-amino acids which were fluorescent were located under a long-wavelength UV lamp.

RESULTS AND DISCUSSION

Fig. 1A represents two-dimensional chromatography with solvents I and II_M. In contrast to the original method^{3,7} (Fig. 1B), the pairs Dns-Asp/Dns-Glu and Dns-Thr/Dns-Ser were clearly resolved without loss of resolution of other Dns-amino acids. Dns-His was separated from the still unresolved Dns- α, ε -Lys and Dns-Arg. Dns-carboxymethylcysteine was also separated from Dns-OH, although Dns-cysteic acid may still be obscured by the large, intensely fluorescent, Dns-OH. Except for the separations of Dns-Ala from Dns-NH₂ and of Dns-Arg from Dns- α - or ε -Lys, no third solvent was required. Dns-Ala and Dns-NH₂ exhibited fluorescent spots of different color, and sometimes they could be differentiated on this basis without further chromatography. When necessary, Dns-Ala and Dns-NH₂ could be readily separated with solvent III of Hartley³ after application of solvents I and II_M, or by chromatography with ethyl acetate in solvent II_M (see Experimental) after solvent I.

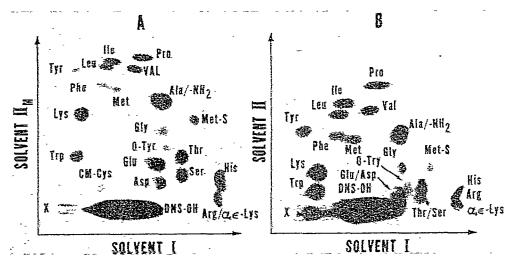


Fig. 1. 1 μ l of a mixture of 100 pmoles of each of the following Dns-amino acids in 95% ethanol was applied and resolved by solvents I and H_{st} (A) and by solvents I and H³⁻⁷ (B) as described in Experimental: Dns-Ala, Dns-Arg, Dns-Asp, Dns-carboxymethylcysteine (CM-Cys), Dns-cysteic acid, Dns-Glu, Dns-Gly, Dns-His, Dns-Ile, Dns-Leu, Dns-bis-Lys, Dns- ϵ -Lys, Dns-Met, Dns-methionine sulfone (Met-S), Dns-Phe. Dns-Pro, Dns-Ser, Dns-Thr, Dns-Trp, Dns-O-Tyr, Dns-bis-Tyr, Dns-Val and Dns-NH₂. The origin is designated by X.

In the latter method the resolution between Dns-Ile and Dns-Leu, and between Dns-Pro and Dns-Val, decreased. Solvent II_M did not improve the separation between Dns-Arg and Dns- α - or ε -Lys and another solvent must be used³. Typical tryptic peptides contain a C-terminal residue of either Arg or Lys. Therefore, when the peptide composition is known, there is no need to resolve Dns-Arg from Dns-Lys.

ACKNOWLEDGEMENT

This work was supported by National Institutes of Health grant CA-14395 and N.S.F. grant GB042701.

REFERENCES

- 1 J. Rosmus and Z. Deyl, Chromatogr. Rev., 13 (1971) 163.
- 2 W. R. Gray, Methods Enzymol., 25 (1972) 121.
- 3 B. S. Hartley, Biochem. J., 119 (1970) 805.
- 4 C. J. Bruton and B. S. Hartley, J. Mol. Biol., 52 (1970) 165.
- 5 A. M. Weiner, T. Platt and K. Weber, J. Biol. Chem., 247 (1972) 3242.
- 6 K. Crowshaw, S. J. Jessup and P. W. Ramwell, Biochem. J., 103 (1967) 79.
- 7 K. R. Woods and K.-T. Wang, Biochim. Biophys. Acta, 133 (1967) 369.
- 8 C. Gros and B. Labouesse, Eur. J. Biochem., 7 (1969) 463.